Bagged Structure Learning of Bayesian Networks
نویسنده
چکیده
We present a novel approach for density estimation using Bayesian networks when faced with scarce and partially observed data. Our approach relies on Efron’s bootstrap framework, and replaces the standard model selection score by a bootstrap aggregation objective aimed at sifting out bad decisions during the learning procedure. Unlike previous bootstrap or MCMC based approaches that are only aimed at recovering specific structural features, we learn a concrete density model that can be used for probabilistic generalization. To make use of our objective when some of the data is missing, we propose a bagged structural EM procedure that does not incur the heavy computational cost typically associated with a bootstrap-based approach. We compare our bagged objective to the Bayesian score and the Bayesian information criterion (BIC), as well as other bootstrap-based model selection objectives, and demonstrate its effectiveness in improving generalization performance for varied real-life datasets.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کامل Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملBagged Structure Learning of Bayesian Network
We present a novel approach for density estimation using Bayesian networks when faced with scarce and partially observed data. Our approach relies on Efron’s bootstrap framework, and replaces the standard model selection score by a bootstrap aggregation objective aimed at sifting out bad decisions during the learning procedure. Unlike previous bootstrap or MCMC based approaches that are only ai...
متن کامل